Star Wars VIII

Synopsis

“What you’ve just said is one of the most insanely idiotic things I have ever heard. … Everyone in this room is now dumber…” (https://www.youtube.com/watch?v=5hfYJsQAhl0)

The Good

  • The makers of the movie tried using imagination a little, instead of copy-pasting the previous episodes.
  • The music was good – it sounded as a variation on the classic theme, but not exactly the same.
  • The makers started using jokes, which made the movie much less boring.  I do appreciate the appearance of the iron!

The Bad

  • It is kinda alarming that Frankie Four Fingers, in a minute or so of his screen time, is more charismatic than all the other characters combined.
  • The repertoire of characters who you don’t like or care about was enriched by another rebel girl and another woman in the rebel leadership, whatever their names are.
  • It’s good that the characters have a sense of humor.  But I feel that the whole movie is more of a Christmas comedy than a space saga.

The Ugly

  • The movie features story elements that don’t lead anywhere – just to keep things happening.
  • Snoke’s story is so rich!  Everything is clear now.
  • By the very rules of this fictional universe, the Sith use the Dark Side of the Force, which works with emotions like fear, anger, hatred and so on.  Well, in the light of this, it’s really hard to tell who is Jedi and who is Sith if you don’t have this knowledge already.  Sith are calm, humorous, and logical.  Jedi are often depressed or hateful or just plain useless.  Earlier, they proved to be defenseless against order 66, now a part of them followed the First Order.  What did you teach them, Luke?
  • The galaxy doesn’t seem to care about the rebels led by Leia, who are supposed to save them, nor do other rebels.  The idea of someone else manipulating the sides of the conflict got just a few seconds of the screen time.
  • The black guy was about to make one cool thing in the whole story, he got my respect and I even remember his name – Finn.  But they [spoiler] him!
Advertisements

Элементарные частицы в Стандартной модели

Бозон – частица с целым значением спина.

Калибровочные бозоны – бозоны, которые действуют как переносчики фундаментальных взаимодействий.

Фотон – квант электромагнитного излучения, имеет спиновое квантовое число s=1, то есть величина спинового момента импульса равна S=\sqrt{s(s+1)}\hbar=\sqrt2\hbar.  Самая распространённая по численности частица во Вселенной.

W+, W и Z0-бозоны – переносчики слабого взаимодействия.

Глюон – переносчик сильного взаимодействия, спин 1, безмассовый, несёт цвет-антицвет.

Фермион – частица (или квази-частица) с полуцелым значением спина.  Подчиняется принципу исключения: в одном квантовом состоянии может находиться не более одной частицы.

Элементарная частица – микрообъект субъядерного масштаба, который невозможно расщепить на составные части.

Фундаментальная частица – бесструктурная элементарная частица.

Лептон – фундаментальная частица, фермион, не участвующий в сильном взаимодействии, спин 1/2: электрон e^- и электронное нейтрино \nu_e, мюон \mu^- (в 207 раз тяжелее электрона; через 2.2 мкс распадается на электрон, мюонное нейтрино и электронное антинейтрино) и мюонное нейтрино \nu_{\mu}, тау-лептон \tau^- (распадается на мюон \mu^-, тау-нейтрино\nu_{\tau} и мюонное антинейтрино \bar{\nu}_{\mu}) и тау-нейтрино \nu_{\tau}, плюс шесть их античастиц.  Нейтрино имеют ненулевую массу.

Адроны – класс элементарных частиц, подверженных сильному взаимодействию. Состоят из кварков.

Кварк – фундаментальная частица, фермион, входящая в состав адронов.  Спин 1/2.  Величина заряда – 1/3 или 2/3 заряда электрона.  Барионное число 1/3 (у антикварков -1/3).  Порождаются глюонами парой кварк-антикварк.

Барионы – адроны, фермионы, состоящие из трёх – красного, зелёного и синего – кварков.

Фундаментальные фермионы – лептоны и кварки.

Мезоны – составные элементарные частицы, адроны, бозоны, состоящие из равного числа кварков и антикварков.  Все мезоны нестабильны.

Пионы (пи-мезоны)\pi^-, \pi^+ (273 массы электрона), \pi^0 (264 массы электрона.  Имеют наименьшую массу среди мезонов и нулевой спин.  \pi^- распадается на \mu^- и антинейтрино,  \pi^+ распадается на \mu^+ и нейтрино,  \pi^0 распадается на два фотона.

Particle Physics and Cosmology

Fundamental particles:  Each particle has an antiparticle; some particles are their own antiparticles.  Particles can be created and destroyed, some of them (including electrons and positrons) only in pairs or in conjunction with other particles and antiparticles.

Particles serve as mediators for the fundamental interactions.  The photon is the mediator of the electromagnetic interaction.  Yukawa predicted the existence of mesons to mediate the nuclear interaction.  Mediating particles that can exist only because of the uncertainty principle for energy are called virtual particles.

Particle accelerators and detectors:  Cyclotrons, synchrotrons, and linear accelerators are used to accelerate charged particles to high energies to experiment with particle interactions.  Only part of the beam energy is available to cause reactions with targets at rest.  The problem is avoided in colliding-beam experiments.

Particles and interactions:  Four fundamental interactions are found in nature: the strong, electromagnetic, weak, and gravitational interactions.  Particles can be described in terms of their interactions and of quantities that are conserved in all or some of the interactions.

Fermions have half-integer spins; bosons have integer spins.  Leptons, which are fermions, have no strong interactions.  Strongly interacting particles are called hadrons.  They include mesons, which are always bosons, and baryons, which are always fermions.  There are conservation laws for three different lepton numbers and for baryon number.  Additional quantum numbers, including strangeness and charm, are conserved in some interactions.

Quarks:  Hadrons are composed of quarks.  There thought to be six types of quarks.  The interaction between quarks is mediated by gluons.  Quarks and gluons have an additional attribute called color.

Symmetry and the unification of interactions:  Symmetry considerations play a central role in all fundamental-particle theories.  The electromagnetic and weak interactions become unified at high energies into the electroweak interaction.  In grand unified theories the strong interaction is also unified with these interactions, but at much higher energies.

The expanding universe and its composition:  The Hubble law shows that galaxies are receding from each other and that the universe is expanding.  Observations show that the rate of expansion is accelerating due to the presence of dark energy, which makes up 65.8% of energy in the universe.  Only 4.9% of the energy in the universe is in the form of conventional matter; the remaining 26.6% is dark matter, whose nature is poorly understood.

The history of the universe:  In the standard model of the universe, a Big Bang gave rise to the first fundamental particles.  They eventually formed into the lightest atoms as the universe expanded and cooled.  The cosmic background radiation is a relic of the time when these atoms formed.  The heavier elements were manufactured much later by fusion reactions inside stars.

Nuclear Physics

Nuclear properties:  A nucleus is composed of A nucleons (Z protons and N neutrons).  All nuclei have about the same density.  The radius of a nucleus with mass number A is given approximately by equation R=R_0\sqrt[3]A (R_0=1.2\times10^{-15}\,\mathrm{m}).  A single nuclear species of a given Z and N is called a nuclide.  Isotopes are nuclides of the same element (same Z) that have different number of neutrons.  Nuclear masses are measured in atomic mass units.  Nucleons have an angular momentum and a magnetic moment.

Nuclear binding and structure:  The mass of a nucleus is always less than the mass of the protons and neutrons within it.  The mass difference multiplied by c^2 gives the binding energy E_{\mathrm{B}}=(ZM_{\mathrm{H}}+Nm_{\mathrm{n}}-\,_Z^AM)c^2.  The binding energy for a given nuclide is determined by the nuclear force, which is short range and favors pairs of particles, and by the electrical repulsion between protons.  A nucleus is unstable if A or Z is too large or if the ratio N/Z is wrong.  Two widely used models of the nucleus are the liquid-drop model and the shell model; the latter is analogous to the central-field approximation for atomic structure.

Radioactive decay:  Unstable nuclides usually emit an alpha-particle (a \,_2^4\mathrm{He} nucleus) or a beta-particle (an electron) in the process of change to another nuclide, sometimes followed by a gamma-ray photon.  The rate of decay of an unstable nucleus is described by the decay constant \lambda, the half-life T_{1/2}, or the lifetime T_{\mathrm{mean}}: T_{\mathrm{mean}}=\frac1{\lambda}=\frac{T_{1/2}}{\ln2}=\frac{T_{1/2}}{0.693}.  If the number of nuclei at time t=0 is N_0 and no more are produced, the number at time t is given by equation N(t)=N_0e^{-\lambda t}.

Biological effects of radiation:   The biological effect of any radiation depends on the product of the energy absorbed per unit mass and the relative biological effectiveness (RBE), which is different for different radiations.

Nuclear reactions:  In a nuclear reaction, two nuclei or particles collide to produce two new nuclei or particles.  Reactions can be exoergic or endoergic.  Several conservation law, including charge, energy, momentum, angular momentum, and nucleon number, are obeyed.  Energy is released by the fission of a heavy nucleus into two lighter, always unstable, nuclei.  Energy is also released by the fusion of two light nuclei into a heavier nucleus.

Molecules and Condensed Matter

Molecular bonds and molecular spectra:  The principal types of molecular bonds are ionic, covalent, van der Waals, and hydrogen bonds.  In a diatomic molecule the rotational energy levels are given by equation: E_l=l(l+1)\frac{\hbar^2}{2I} (l=0,1,2,\ldots), where I=m_{\mathrm{r}}r_0^2 is the moment of inertia of the molecule, m_{\mathrm{r}}=\frac{m_1m_2}{m_1+m_2} is its reduced mass, and r_0 is the distance between the two atoms.  The vibrational energy levels are given by equation E_n=(n+\frac12)\hbar\omega=(n+\frac12)\hbar\sqrt{\frac{k'}{m_{\mathrm{r}}}} n=(0,1,2,\ldots), where k' is the effective force constant of the interatomic force.

Solids and energy bands:  Interatomic bonds in solids are of the same types as in molecules plus one additional type, the metallic bond.  Associating the basis with each lattice point gives the crystal structure.

When atoms are bound together in condensed matter, their outer energy levels spread out into bands.  At absolute zero, insulators and semiconductors have a completely filled valence band separated by an energy gap from an empty conduction band.  Conductors, including metals, have partially filled conduction bands.

Free-electron model of metal:  In the free-electron model of the behavior of conductors, the electrons are treated as completely free particles within the conductor.  In this model the density of states is given by equation g(E)=\frac{(2m)^{2/3}V}{2\pi^2\hbar^3}E^{1/2}.  The probability that an energy state of energy E is occupied is given by the Fermi-Dirac distribution, f(E)=\frac1{e^{(E-E_{\mathrm{F}})/kT}+1} (E_{\mathrm{F}} is the Fermi energy), which is a consequence of the exclusion principle.

Semiconductors:  A semiconductor has an energy gap of about 1 eV between its valence and conduction bands.  Its electrical properties can be drastically changed by the addition of small concentrations of donor impurities, giving an n-type semiconductor, or acceptor impurities, giving a p-type semiconductor.

Semiconductor devices:  Many semiconductor devices, including diodes, transistors, and integrated circuits use one or more p\text{-}n-junctions.  The current-voltage relationship for an ideal p\text{-}n-junction diode is given by equation I=I_S(e^{eV/kT}-1).

Quantum Mechanics II: Atomic Structure

Three-dimensional problems:  The time-independent Schrödinger equation for three-dimensional problems is given by: -\frac{\hbar^2}{2m}(\frac{\partial^2\psi(x,y,z)}{\partial x^2}+\frac{\partial^2\psi(x,y,z)}{\partial y^2}+\frac{\partial^2\psi(x,y,z)}{\partial z^2})+U(x,y,z)\psi(x,y,z)=E\psi(x,y,z).

Particle in a three-dimensional box:  The wave function for a particle in a cubical box is the product of a function of x only, a function of y only, and a function of z only.  Each stationary state is described by three quantum numbers (n_X,n_Y,n_Z): E_{n_X,n_Y,n_Z}=\frac{(n_X^2+n_Y^2+n_Z^2)\pi^2\hbar^2}{2mL^2}, (n_X=1,2,3,\ldots;n_Y=1,2,3,\ldots;n_Z=1,2,3,\ldots).  Most of the energy levels given by this equation exhibit degeneracy: More than one quantum state has the same energy.

The hydrogen atom:  The Schrödinger equation for the hydrogen atom gives the same energy levels as the Bohr model: E_n=-\frac1{(4\pi\epsilon_0)^2}\frac{m_\mathrm{r}e^4}{2n^2\hbar^2}=-\frac{13.60\,\mathrm{eV}}{n^2}.  If the nucleus has charge Ze, there is an additional factor of Z^2 in the numerator.  The possible magnitudes L of orbital angular momentum are given by equation: L=\sqrt{l(l+1)}\hbar, (l=0,1,2,\ldots,n-1).  The possible values of the z-component of orbital angular momentum are given by equation: L_z=m_l\hbar, (m_l=0,\pm1,\pm2,\ldots,\pm l).

The probability that an atomic electron is between r and r+dr from the nucleus is P(r)\,dr, given by equation: P(r)\,dr=|\psi|^2\,dV=|\psi|^2\,4\pi r^2\,dr.  Atomic distances are often measured in units of a, the smallest distance between the electron and the nucleus in the Bohr model: a=\frac{\epsilon_0h^2}{\pi m_\mathrm{r}e^2}=\frac{4\pi\epsilon_0\hbar^2}{m_\mathrm{r}e^2}=5.29\times10^{-11}\mathrm{m}.

The Zeeman effect:  The interaction energy of an electron (mass m) with magnetic quantum number m_l in a magnetic field \vec{B} along the +z-direction is given by equation: U=-\mu_zB=m_l\frac{e\hbar}{2m}B=m_lm_{\mathrm{B}}B (m_l=0,\pm1,\pm2,\ldots,\pm l), where m_{\mathrm{B}}=\frac{e\hbar}{2m} is called the Bohr magneton.

Electron spin:  An electron has an intrinsic spin angular momentum of magnitude S, given by equation S=\sqrt{\frac12(\frac12+1)}\hbar=\sqrt{\frac34}\hbar.  The possible values of the z-component of the spin angular momentum are S_x=m_s\hbar (m_s=\pm\frac12).

An orbiting electron experience an interaction between its spin and the effective magnetic field produced by the relative motion of electron and nucleus.  This spin-orbit coupling, along with relativistic effects, splits the energy levels according to their total angular momentum quantum number j: E_{n,j}=-\frac{13.60\,\mathrm{eV}}{n^2}[1+\frac{n^2}{\alpha^2}(\frac{n}{j+\frac12}-\frac34)].

Many-electron atoms:  In a hydrogen atom, the quantum numbers n, l, m_l, and m_s of the electron have certain allowed values given by equation: n\geq1, 0\leq l\leq n-1, |m_l|\leq l, m_s=\pm\frac12.  In a many-electron atom, the allowed quantum numbers for each electron are the same as in hydrogen, but the energy levels depend on both n and l because of screening, the partial cancellation of the field of the nucleus by inner electrons.  If the effective (screened) charge attracting an electron is Z_{\mathrm{eff}}e, the energies of the levels are given approximately by equation: E_n=-\frac{Z_{\mathrm{eff}}^2}{n^2}(13.6\,\mathrm{eV}).

X-ray spectra:  Moseley’s law states that the frequency of a K_{\alpha} x ray from a target with atomic number Z is given by equation f=(2.48\times10^{15}\,\mathrm{Hz})(Z-1)^2.  Characteristic x-ray spectra result from transition to a hole in an inner energy level of an atom.

Quantum entanglement:  The wave function of two identical particles can be such that neither particle is itself in a definite state.  For example, the wave function could be a combination of one term with particle 1 in state A and particle 2 in state B and one term with particle 1 in state B and particle 2 in state A.  The two particles are said to be entangled, since measuring the state of one particle automatically determines the result of subsequent measurements of the other particle.